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Supervised Learning

Find a classifier which performs well on new unseen data

⇒ Minimize the empirical error on training data

⇒ Require generalization guarantees

Generalization bound

True Error ≤ Empirical Error + f
(

complexity ,
1

number of examples

)
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Observations with Multiple Views

The corpus is described by different features called views
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Multiview Learning

The corpus is described by different features called views

Objective

Take advantage of multiple views of data to make better prediction

Early Fusion Late Fusion
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Multiview Learning

Objective

Consider more than two views

Derive generalization guarantees for multiview learning

Our Solution
Combination = Weighted majority vote over the classifiers
⇒ Exploiting PAC-Bayesian Theory and Boosting
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Thesis Contributions

Theoretical Contributions

A new PAC-Bayesian Theorem as an Expected Risk Bound (CAp’17, ECML-PKDD’17)

PAC-Bayesian Analysis of Multiview Learning (CAp’16, CAp’17, ECML-PKDD’17 )

Algorithmic Contributions

Two-step multiview learning algorithm based on late fusion approach (CAp’17,
ECML-PKDD’17)

One-step boosting based multiview learning algorithm (Submitted to Neurocomputing)

Multiview Learning as Bregman Divergence Minimization (CAp’18, IDA’18)
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PAC-Bayesian Setting

X ⊆ Rd input space, Y = {−1,+1}
D is unknown distribution on X×Y
Learning Sample:
S = {(xi , yi )}m

i=1
iid∼ (D)m

A set of classifiers H = {h : X → Y}

PAC-Bayesian classification (1-view)
Goal:
Finding the Q-weighted majority vote BQ

over H which minimizes RD(BQ)

RD(BQ) = E
(x,y)∼D

1[BQ(x) 6=y ]︸ ︷︷ ︸
True Risk

where BQ(x) = sign
[
E

h∼Q
h(x)

]
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The stochastic Gibbs classifier

The PAC-Bayesian approach does not directly focus on RD(BQ)

but on the error of the stochastic Gibbs classifier GQ

which labels a new example x ∈ X by
picking one h according to Q
returning h(x)

IMPORTANT — the risk of GQ is the expectation of the risks on H according to Q

RD(GQ) = E
h∼Q

RD(h)

We can prove

i) RD(BQ) ≤ 2RD(GQ)

ii) C-Bound:

RD(BQ) ≤ 1− (1− 2RD(GQ))2

1− 2dD(Q)

where dD(Q) = E
x∼DX

E
h,h′∼Q2

1[h(x) 6=h′(x)] is the expected disagreement
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Monoview PAC-Bayesian Bound

General Form of Probabilistic Generalization Bound:

Prob
S∼(D)m

(
∀h ∈ H, RD(h)︸ ︷︷ ︸

True Error

≤ RS(h)︸ ︷︷ ︸
Empirical Error

+ f
(

complexity(h),
1
m
, δ

))
≥ 1− δ

Theorem (McAllester 2003, Germain et al. 2015 )
For any D on X×Y, for any H, for any prior P over H, for any δ ∈ (0, 1], we have

Prob
S∼(D)m

(
∀Q on H, E

h∼Q
RD(h)︸ ︷︷ ︸

RD(GQ)

≤ E
h∼Q

RS(h)︸ ︷︷ ︸
RS(GQ)

+

√
KL(Q‖P)+ln 2

√
m
δ

2m

)
≥ 1−δ

where, RD(h) and RS(h) are respectively the true and the empirical risks of individual
voters and KL(Q‖P) = E

h∼Q
ln Q(h)

P(h)
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Monoview Non-Probabilistic PAC-Bayesian Bound

For any D on X×Y, for any H, for any prior P over H, for any δ ∈ (0, 1], we have

Prob
S∼(D)m

(
∀Q on H, E

h∼Q
RD(h)︸ ︷︷ ︸

RD(GQ)

≤ E
h∼Q

RS(h)︸ ︷︷ ︸
RS(GQ)

+

√
KL(Q‖P)+ln 2

√
m
δ

2m

)
≥ 1−δ

First contribution (CAp’17, ECML-PKDD’17)

⇒ Risk Bound in expectation over all learning samples S iid∼ (D)m

For any D on X × Y, for any H, for any prior P on H, for any convex function
D : [0, 1]× [0, 1]→ R

E
S∼(D)m

RD(GQS ) ≤ E
S∼(D)m

RS(GQS ) +

√
E

S∼Dm
KL(QS‖P)+ln 2

√
m

2m
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Take Home Message

Expected Risk bound for PAC-Bayesian theory

General bound for single view learning

Expressed as expectation over all the possible learning samples

Extension of this bound to multiview learning

Anil Goyal (LaHC, St-Etienne and LIG, Grenoble) Multiview Weighted Majority Vote Classifier October 23, 2018 13 / 49



Outline

1 Monoview PAC-Bayesian Theory
Background
PAC-Bayesian Generalization Bounds

2 PAC-Bayesian analysis of Multiview Learning
Hierarchy of distributions
Multiview PAC-Bayes Generalization Bound

3 Multiview Learning Algorithms based on PAC-Bayesian Theory
Proposed Algorithms
Experimental Results

4 Multiview Learning as Bregman Divergence optimization
Bregman Divergence Minimization
Parallel Update Boosting like Algorithm- MωMvC2

Experimental Results

5 Conclusion and Perspectives

Anil Goyal (LaHC, St-Etienne and LIG, Grenoble) Multiview Weighted Majority Vote Classifier October 23, 2018 14 / 49



Multiview Learning Setting

Objective

Take advantage of V ≥ 2 views of data to make better prediction

Control the trade-off accuracy and diversity between the views

From Multiview to PAC-Bayes. . .

Hierarchy of distribution over all the view-specific classifiers
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Multiview Learning Setting

Formally,

V ≥2 different input spaces Xv ⊆ Rdv

Joint input space: X = X1 × . . .×XV , output space: Y = {−1,+1}
An example: (x, y) =

(
(x1, . . . , xV ), y

)
∈ X × Y

D unknown distribution on X × Y
Given multiview learning sample S = {(xi , yi )}m

i=1 ∼ (D)m

∀v ∈ V, we have Hv a set of view-specific classifiers s.t. ∀hv ∈ Hv , hv : Xv → Y
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Hierarchy of distributions for PAC-Bayes

For each view v ∈ V, Pv prior distribution on Hv

h1
2

h2
2

h3
2

h1
1

h2
1

h3
1

h4
2

h1
3

h2
3

view 2

view 1

view 3

all views
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Hierarchy of distributions for PAC-Bayes

For each view v ∈ V, Pv prior distribution on Hv

=⇒ finding a posterior distribution Qv over Hv
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2
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Hierarchy of distributions for PAC-Bayes

For each view v ∈ V, Pv prior distribution on Hv

=⇒ finding a posterior distribution Qv over Hv

π hyper-prior distribution over all the views V
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Hierarchy of distributions for PAC-Bayes

For each view v ∈ V, Pv prior distribution on Hv

=⇒ finding a posterior distribution Qv over Hv

π hyper-prior distribution over all the views V
=⇒ finding a hyper-posterior distribution ρ on V

such that they minimize the true risk RD(BMV
ρ ) of the majority vote BMV

ρ

BMV
ρ (x) = sign

[
E

v∼ρ
E

h∼Qv
h(xv )

]
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The Multiview Gibbs classifier

True risk of the Multiview Gibbs classifier

RD(GMV
ρ ) = E

(x,y)∼D
E

v∼ρ
E

h∼Qv
RD(h(xv )) =

1
2

d MV
D (ρ)︸ ︷︷ ︸

disagreement

+ eMV
D (ρ)︸ ︷︷ ︸

joint error

We can prove

(i) RD(BMV
ρ ) ≤ 2RD(GMV

ρ )

(ii) The multiview C-Bound
↪→ Controls the trade-off between accuracy and diversity

RD(BMV
ρ ) ≤ 1−

(
1− 2RD(GMV

ρ )
)2

1− 2d MV
D (ρ)

≤ 1−

(
1− 2Ev∼ρ RD(GQv )

)2

1− 2Ev∼ρ dD(Qv )

where d MV
D (ρ) = E

x∼DX
E

v∼ρ
E

v′∼ρ
E

h∼Qv
E

h′∼Qv′
1
[h(xv ) 6=h′(xv′ )]

eMV
D (ρ) = E

(x,y)∼D
E

v∼ρ
E

v′∼ρ
E

h∼Qv
E

h′∼Qv′
1[h(xv ) 6=y ]1[h′(xv′ ) 6=y ]
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Non-probabilistic Multiview PAC-Bayes Bound
(CAp’16, CAp’17, ECML-PKDD’17 )

For any D on X × Y, for any set of priors {Pv}V
v=1, for any hyper-priors π over V, we

have

E
S∼Dm

RD(GMV
ρS

)≤ 1
2

E
S∼Dm

d MV
S (ρS) + E

S∼Dm
eMV

S (ρS)}︸ ︷︷ ︸
E

S∼Dm
RS(GMV

ρS
)

+

√√√√

E
S∼Dm

E
v∼ρS

KL(Qv,S‖Pv ) +

E
S∼Dm

KL(ρS‖π) + ln 2
√

m

2m

Trade-off:
Empirical disagreement and joint error

Expectation of view-specific KL divergences over all the views

KL divergence between hyper-posterior and hyper-prior
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Take Home Message

Instantiation of the PAC-Bayesian theory to multiview learning

with more than 2 views

by taking into account trade-off between accuracy and diversity between views
and view-specific classifiers

by considering a non-uniform distribution over the views

Derived Multiview C-Bound controlling the trade-off between accuracy and
diversity
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Algorithm 1: FusionallCq ( CAp’17, ECML-PKDD’17 )

 Classifier 1  Classifier 2  Classifier 3

COMBINATION

View 1 View 2 View 3

OUTPUT

Linear SVM

CqBoost

1.) First Level
↪→ Learned with a Linear SVM from 60% of the learning sample
↪→ This step is done without cross-validation with different C parameter values

2.) Second Level
↪→ Learned with CqBoost [Roy et al., 2016] from 40% of the learning sample
↪→ CqBoost is PAC-Bayes algorithm based on monoview C-Bound
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Algorithm 2: PB-MVBoost (Boosting based algorithm)
(Submitted to Neurocomputing)

Given: S = {(xi , yi ), . . . , (xm, ym)}, where xi = (x1
i , x

2
i , . . . , x

V
i ) and yi ∈ {−1, 1}.

Initialize: D1(xi )← 1/m, ρ1
v ← 1/V , and Hv ← φ

For t = 1, . . . ,T :

1. For each view, learn a weak classifier ht
v : Xv → {−1, 1} w.r.t. distribution Dt

2. Compute classifier’s weight: ∀v ∈ V,Qt
v

3. ∀v ∈ V,Hv ← Hv ∪ {ht
v}

4. Update the weights over views (ρ) by optimizing multview C-Bound.

5. Update

Dt+1(xi )←
Dt (xi ) exp(−yi

∑V
v=1 ρ

t
v (Qt

v ht
v (xv

i )))∑m
j=1Dt (xj ) exp(−yj

∑V
v=1 ρ

t
v (Qt

v ht
v (xv

j )))

Output the multiview majority vote classifier:

BMV
ρ (x) = sign

[
E

v∼ρ
E

h∼Qv
h(xv )

]
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Algorithm 2: PB-MVBoost (Submitted to Neurocomputing)

Learning the weights over view-specific classifiers (view-specific informations):

∀v ∈ V,Qt
v ←

1
2

[
ln
(

1− εt
v

εt
v

)]
where , εt

v ← E
(xi ,yi )∼Dt

[
1[ht

v (x
v
i ) 6=yi ]

]

Learning the weights over views (accuracy and diversity between views):

maxρ

(
1− 2Ev∼ρ RD(GQv )

)2

1− 2Ev∼ρ dD(Qv )

s.t .
V∑

v=1

ρt
v = 1, ρt

v ≥ 0 ∀v ∈ {1, ...,V}
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Datasets (MNIST)

↪→ Images of handwritten digits (70K images)

↪→ Distributed over 10 classes

↪→ Generated 2 four-view datasets where each view is a vector of R14×14

⇒ MNIST1: 4 quarters of image as 4 views

⇒ MNIST2: 4 overlapping views around centre of image

↪→ 10K of documents as test samples

MNIST1

MNIST2
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Datasets (Reuters RCV1/RCV2)

↪→ Multilingual text classification corpus (110K documents)

↪→ Documents written in 5 languages (views / representations )

↪→ Documents are distributed over 6 classes

↪→ 30% of documents as test samples
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Experimental Protocol

⇒ FusionallCq : Linear SVM at first level and Cqboost at second level

⇒ PB-MVBoost: Decision Trees as weak learner with T = 100 iterations

Baseline Approaches:

⇒ Mono: Learn view-specific model on each view (Decision Trees)

⇒ Concat : One single Decision Trees model (Early Fusion)

⇒ Fusiondt : Late fusion approach using Decision Trees at both levels

⇒ MV-MV [Amini et al., 2009]: Multiview uniform majority vote using Decision Trees

⇒ rBoost.SH [Peng et al., 2011]: Boosting based multiview learning algorithm

⇒ MV-AdaBoost : Multiview uniform majority vote using Adaboost

⇒ MV-Boost : Variant of our algorithm PB-MVBoost but without learning weights over
views by optimizing multiview C-Bound
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Results

Accuracy and F1-score of different approaches averaged over all the classes and
over 20 random sets of m = 500 labeled examples per training set.

Strategy
MNIST1 MNIST2 Reuters

Accuracy F1 Accuracy F1 Accuracy F1

Mono .9034±.001 .5353±.006 .9164±.001 .5987±.007 .8420±.002 .5051±.007
Concat .9224±.002 .6168±.011 .9214±.002 .6142±.013 .8431±.004 .5088±.012
Fusiondt .9320±.001 .5451±.019 .9366±.001 .5937±.020 .8587±.003 .4128±.017
MV-MV .9402±.001 .6321±.009 .9450±.001 .6849±.008 .8780±.002 .5443±.012

rBoost.SH .9256±.001 .5315±.009 .9545±.0007 .7258±.005 .8853±.002 .5718±.011
MV-AdaBoost .9514±.001 .6510±.012 .9641±.0009 .7776±.007 .8942±.006 .5581±.013
MV-Boost .9494±.003 .7733±.009 .9555±.002 .7910±.006 .8627±.007 .5789±.012
FusionallCq .9418±.002 .6120±.040 .9548±.003 .7217±.041 .9001 ± .003 .6279 ± .019
PB-MVBoost .9661±.0009 .8066±.005 .9674±.0009 .8166±.006 .8953±.002 .5960±.015
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Results

Evolution of Accuracy and F1 w.r.t. the size of labeled training set
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Results

Comparison between FusionallCq and PB-MVBoost

One-step algorithm PB-MVBoost is more stable and more effective
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Results (PB-MVBoost vs. MV-Boost vs. MV-AdaBoost)

Accuracy and F1-score of different approaches averaged over all the classes and
over 20 random sets of m = 500 labeled examples per training set.

Strategy
MNIST1 MNIST2 Reuters

Accuracy F1 Accuracy F1 Accuracy F1

Mono .9034±.001 .5353±.006 .9164±.001 .5987±.007 .8420±.002 .5051±.007
Concat .9224±.002 .6168±.011 .9214±.002 .6142±.013 .8431±.004 .5088±.012
Fusiondt .9320±.001 .5451±.019 .9366±.001 .5937±.020 .8587±.003 .4128±.017
MV-MV .9402±.001 .6321±.009 .9450±.001 .6849±.008 .8780±.002 .5443±.012

rBoost.SH .9256±.001 .5315±.009 .9545±.0007 .7258±.005 .8853±.002 .5718±.011
MV-AdaBoost .9514±.001 .6510±.012 .9641±.0009 .7776±.007 .8942±.006 .5581±.013
MV-Boost .9494±.003 .7733±.009 .9555±.002 .7910±.006 .8627±.007 .5789±.012
FusionallCq .9418±.002 .6120±.040 .9548±.003 .7217±.041 .9001 ± .003 .6279 ± .019
PB-MVBoost .9661±.0009 .8066±.005 .9674±.0009 .8166±.006 .8953±.002 .5960±.015

Two-level hierarchical strategy in a PAC-Bayesian manner is an effective way
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Results

Behaviour of PB-MVBoost over T = 100 iterations for Reuters (m = 500) dataset

↪→ The empirical multiview C-Bound keeps on decreasing over the iterations
↪→ Control of trade-off between accuracy and diversity between the views
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Take Home Message

Designed two multiview learning algorithms based on PAC-Bayesian Theory

FusionallCq : Late fusion based algorithm

PB-MVBoost: One-step boosting based algorithm

PB-MVBoost is more stable and effective algorithm for multiview learning
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Two-level Multiview Weighted Majority vote (CAp’18, IDA’18)

For each view v ∈ V, Hv is a set of nv classifiers

=⇒ find weights Q = (Qv )1≤v≤V over Hv

=⇒ find weights over views ρ=(ρv )1≤v≤V

Majority Vote: BMV
ρ (x) = E

v∼ρ
E

hv∼Qv
hv (xv )

such that BMV
ρ (x) has smallest generalization error on D

h1
2

h2
2

h3
2

h1
1

h2
1

h3
1

h4
2

h1
3

h2
3

view 2

view 1

view 3

all views
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Multiview Learning by Bregman Divergence Minimization

Following ERM principle,

Aim =⇒ Minimize 0/1-loss over training sample S:

RS(BMV
ρ ) =

1
m

m∑
i=1

1[yi 6=BMV
ρ (xi )]

≤ 1
m

m∑
i=1

ln
(

1 + exp
(
− yiBMV

ρ (xi )
))

which is equivalent to the minimization of a bregman divergence:

DF

(
0
∣∣∣∣∣∣LF

(
1
2

1m,
V∑

v=1

ρv Mv Qv

))
=

m∑
i=1

ln
(

1+exp
(
−yi E

v∼ρ
E

hv∼Qv
hv (xv )

))

where, DF (p||q)=
m∑

i=1

pi ln
(

pi

qi

)
+(1−pi ) ln

(
1−pi

1−qi

)
and LF

(
1
2

1m, z
)

i
=

1
(1 + ezi )
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Parallel Update Boosting like Algorithm- MωMvC2(CAp’18, IDA’18)

Given: Training set S = {(xi , yi )}m
i=1, where xi = (x1

i , . . . , x
V
i ) and yi ∈ {−1, 1}

Initialize: ρ(1) ← 1
V 1V and ∀v ,Q(1)

v ← 1
nV

1nv

Train the weak classifiers (Hv )1≤v≤V over S
For v ∈ V set the m × nv matrix Mv such that (Mv )ij = yih j

v (xv
i )

For t = 1, . . . ,T :

1. Update weights over examples:

∀i ∈ {1, . . . ,m}, q(t)
i = σ

yi

V∑
v=1

ρ
(t)
v

nv∑
j=1

Q j (t)
v h j

v (xv
i )


2. Update weights Q over the view-specific classifiers

3. Update weights ρ over the views.

Output the weighted multiview majority vote classifier:

BMV
ρ (x) = E

v∼ρ
E

hv∼Qv
hv (xv )
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Parallel Update Boosting like Algorithm- MωMvC2(CAp’18, IDA’18)

For each view v , update weights Q(t+1)
v over the view-specific classifiers:

W (t)+
v,j =

∑
i:sign((Mv )ij )=+1

q(t)
i |(Mv )ij |

W (t)−
v,j =

∑
i:sign((Mv )ij )=−1

q(t)
i |(Mv )ij |

Q j (t+1)
v = Q j (t)

v +
1
2

ln
(W (t)+

v,j

W (t)−
v,j

)

Update weights ρ(t+1) over the views:

minρ −
V∑

v=1

ρv

nv∑
j=1

(√
W (t)+

v,j −
√

W (t)−
v,j

)2

s.t.
V∑

v=1

ρv = 1, ρv ≥ 0 ∀v ∈ V
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Datasets

MNIST:

↪→ Images of handwritten digits (70K images)

↪→ Distributed over 10 classes

↪→ Generated 2 four-view datasets where each view is a vector of R14×14

⇒ MNIST1: 4 quarters of image as 4 views

⇒ MNIST2: 4 overlapping views around centre of image

↪→ 10K of documents as test samples

Reuters RCV1/RCV2:

↪→ Multilingual text classification corpus (110K documents)

↪→ Documents written in 5 languages (views / representations )

↪→ Documents are distributed over 6 classes

↪→ 30% of documents as test samples

Note: Reduced the imbalance between positive and negative examples by
subsampling in the training sets
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Experimental Protocol

⇒ MωMvC2: Decision Trees (1 to maxd −2) as weak learners with T = 2 iterations

Baseline Approaches:

⇒ Mono : Learn view-specific model on each view (Decision Trees)

⇒ Concat : One single Decision Trees model (Early Fusion)

⇒ Fusion: Late fusion approach using Decision Trees at both levels

⇒ MVMLsp [Huusari et al., 2018] : Multiview metric learning approach.

⇒ MV-MV [Amini et al., 2009]: Multiview uniform majority vote using Decision Trees

⇒ rBoost.SH [Peng et al., 2011]: Boosting based multiview learning algorithm
(T = 100 iterations)

⇒ MVWAB [Xiao et al., 2012] : Multiview Weighted Voting AdaBoost algorithm (T = 100
iterations)
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Results

Accuracy and F1-score of different approaches averaged over all the classes and
over 20 random sets of m = 500 labeled examples per training set

Strategy
MNIST1 MNIST2 Reuters

Accuracy F1 Accuracy F1 Accuracy F1

Mono .8369± .002 .5206± .003 .8540± .003 .5523± .004 .7651± .005 .5276± .005
Concat .8708± .005 .5851± .011 .8719± .004 .5866± .010 .7661± .009 .5298± .008
Fusion .8708± .005 .5851± .010 .9029± .009 .6559± .018 .7926± .013 .5533± .015
MVMLsp .7783± .041 .4185± .051 .7766± .062 .4813± .067 .6241± .032 .3488± .045
MV-MV .8956± .003 .6404± .005 .9045± .004 .6627± .009 .8179± .007 .6083± .007
MVWAB .9175± .003 .7011± .009 .9038± .003 .6838± .008 .8147± .007 .6045± .009

rBoost.SH .7950± .006 .4652± .006 .8762± .004 .6089± .007 .8200± .007 .6164± .007
MωMvC2 .9260± .004 .7122± .010 .9169± .005 .6977± .012 .8269± .013 .6280± .010

Two-level hierarchical strategy is an effective way to handle multiview learning
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Results

Evolution of Accuracy and F1 w.r.t. the size of labeled training set
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Comparison (MωMvC2 vs. PB-MVBoost vs. FusionallCq )

↪→ MωMvC2is faster than PB-MVBoostand FusionallCq

↪→ PB-MVBoost: O
(

T
(
V dv m.log(m) + V 3)) and MωMvC2: O

(
V dv m.log(m) + T V 3

)
↪→ PB-MVBoostcan handle the imbalance between classes

↪→ PB-MVBoostcontrols the trade-off between accuracy and diversity between the views
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Take Home Message

Minimization of the multiview classification error is equivalent to the minimization of
Bregman divergences

parallel-update optimization boosting-like algorithm (MωMvC2)

Computationally faster than FusionallCq and PB-MVBoost
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Conclusion

Theoretical point of view:

A non-probabilistic PAC-Bayesian generalization bound

Instantiation of PAC-Bayesian theory to multiview learning with more than 2 views

↪→ Considering hierarchy of distributions over the view-specific classifiers

Algorithmic point of view:

Late fusion based two-step multiview learning algorithm FusionallCq

One-step boosting based multiview learning algorithm PB-MVBoost

↪→ Optimizes multiview C-Bound

↪→ Controls the accuracy and diversity between views

Multiview Learning as Bregman Divergence Minimization

↪→ Parallel update boosting like multiview learning algorithm MωMvC2
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Perspectives

Specialize our PAC-Bayesian generalization bounds to linear classifiers

Suitable stopping criteria for PB-MVBoost

↪→ Analyze the margins of training examples

Extension of our algorithms to semi-supervised multiview learning

↪→ Learn view-specific classifiers using pseudo-labels (for unlabeled data)
generated from other view-specific classifiers

↪→ For PB-MVBoost, use unlabeled data while computing view-specific
disagreement for optimizing multiview C-Bound

Extension of our algorithms to the case of missing views or incomplete views

↪→ For PB-MVBoost, learn view-specific classifiers using available training
examples and adapt the distribution over learning sample accordingly

↪→ For MωMvC2, adapt the definition of the input matrix Mv
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Multiview probabilistic PAC-Bayes Bound

Monoview bound

Prob
S∼Dm

(
D
(

RD(GQ),RS(GQ)
)
≤ 1

m

[
KL(Q‖P)+ln

(
E

h∼P
em D(RS(h),RD(h))

)])
≥ 1− δ

Proposed Bound for Multiview
For any D on X × Y,for any δ∈(0, 1], with a probability at least 1−δ over the random
choice of S∼(D)m, for all posterior {Qv}v

v=1 and hyper-posterior ρ distributions, for any
convex function D : [0, 1]× [0, 1]→ R, we have

D
(

RD(GMV
ρ ),

1
2

d MV
S (ρ) + eMV

S (ρ)︸ ︷︷ ︸
RS(GMV

ρ )

)

≤ 1
m

[
E

v∼ρ
KL(Qv‖Pv ) + KL(ρ‖π) + ln

(
1
δ

E
v∼π

E
h∼Pv

emD(RS(h),RD(h))
)]
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Multiview Non-probabilistic PAC-Bayes Bound

Monoview bound

D
(

E
S∼Dm

RD(GQS ), E
S∼Dm

RS(GQS )

)
≤ 1

m

[
E

S∼Dm
KL(QS‖P)+ln

(
E

S∼Dm
E

h∼P
em D(RS(h),RD(h))

)]

Proposed Bound for Multiview

For any D on X × Y, for any set of priors {Pv}V
v=1, for any hyper-priors π over V, for

any convex function D : [0, 1]× [0, 1]→ R, we have

D
(

E
S∼Dm

RD(GMV
ρS

),
1
2

E
S∼Dm

d MV
S (ρS) + E

S∼Dm
eMV

S (ρS)︸ ︷︷ ︸
RS (GMV

ρS
)

)

≤ 1
m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv ) + E

S∼Dm
KL(ρS‖π) + ln

(
E

S∼Dm
E

v∼π
E

h∼Pv
emD(RS(h),RD(h))

)]
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Square Root Bound

Obtained using D(a, b) = 2(a− b)2

For any D on X × Y, for any set of priors {Pv}V
v=1, for any hyper-priors π over V, we

have

E
S∼Dm

RD(GMV
ρS

)≤ 1
2

E
S∼Dm

d MV
S (ρS) + E

S∼Dm
eMV

S (ρS)}︸ ︷︷ ︸
E

S∼Dm
RS(GMV

ρS
)

+

√√√√ E
S∼Dm

E
v∼ρS

KL(Qv,S‖Pv )+ E
S∼Dm

KL(ρS‖π) + ln 2
√

m

2m

Trade-off:
Empirical disagreement and joint error

Expectation of view-specific KL divergences over all the views

KL divergence between hyper-posterior and hyper-prior

Links the true risk and the empirical risk by a linear relation
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Parametrized Bound

Obtained using D(a, b) = F(b)− C a

For any D on X × Y, for any set of priors {Pv}V
v=1, for any hyper-priors π over V, for all

C > 0 we have

E
S∼Dm

RD(GMV
ρS

) ≤ 1
1− e−C

(
1− exp

[
−

[
C E

S∼Dm
RS(GMV

ρS
)+

1
m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv ) + E

S∼Dm
KL(ρS‖π)

]]])

Explicitly controls the trade-off between the empirical risk and the KL divergence
terms using the hyperparameter C
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Parametrized Bound

Restricting C ∈ (0, 2) and using e−C ≤ 1− C − 1
2 C2, we can obtain looser but simpler

bound

For any D on X × Y, for any set of priors {Pv}V
v=1, for any hyper-priors π over V, for all

C > 0 we have

E
S∼Dm

RD(GMV
ρS

)≤ 1
1− 1

2 C

 E
S∼Dm

RS(GMV
ρS

) +

E
S∼Dm

E
v∼ρS

KL(Qv,S‖Pv ) + E
S∼Dm

KL(ρS‖π)

m × C



Choosing C = 1√
m the bound converges to 1×

[
RS(GMV

ρS
) + 0

]
as m grows
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Small kl Bound

Obtained using D(a, b) = kl(a, b) = a ln a
b + (1− a) ln 1−a

1−b

For any D on X × Y, for any set of priors {Pv}V
v=1, for any hyper-priors π over V, we

have

kl
(

E
S∼Dm

RS(GMV
ρS

), E
S∼Dm

RD(GMV
ρS

)

)
≤ 1

m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv ) + E

S∼Dm
KL(ρS‖π) + ln 2

√
m
]

For upper bound value, one needs to solve:

max b

s.t . kl
(

E
S∼Dm

RS(GMV
ρS

)
∣∣∣∣ b
)

=
1
m

[
E

S∼Dm
E

v∼ρS
KL(Qv,S‖Pv ) + E

S∼Dm
KL(ρS‖π) + ln 2

√
m
]

0 ≤ b ≤ 1.
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Parametrized bound and Small kl bound

Proposition (Germain et al. , 2009)

For 0 ≤ E
S∼Dm

RS(GMV
ρS

) ≤ E
S∼Dm

RD(GMV
ρS

) ≤ 1, we have

max
C≥0

{
− ln

(
1− E

S∼Dm
RD(GMV

ρS
)
[
1− e−C

])
− C E

S∼Dm
RS(GMV

ρS
)

}
=

kl
(

E
S∼Dm

RS(GMV
ρS

), E
S∼Dm

RD(GMV
ρS

)

)

↪→ Small kl bound is tighter or equal to Parametrized bound

↪→ There always exists values of C for which Parametrized bound is tighter than
Small kl bound
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A Generalization Bound for the Multiview C-Bound

Let V ≥ 2 be the number of views. For any distribution D on X × Y, for any set of prior
distributions {Pv}V

v=1, for any hyper-prior distributions π over views V, and for any
convex function D : [0, 1]× [0, 1]→ R, with a probability at least 1− δ over the random
choice of S ∼ (D)m for all posterior {Qv}v

v=1 and hyper-posterior ρ distributions, we
have:

RD(BMV
ρ ) ≤ 1−

(
1− 2 E

v∼ρ
sup

(
rδ/2

Qv ,S
))2

1− 2 E
v∼ρ

inf dδ/2
Qv ,S

,

where

rδ/2
Qv ,S =

{
r : kl(RS(GQv )‖r) ≤ 1

n

[
KL(Qv‖Pv ) + ln

4
√

m
δ

]
and r ≤ 1

2

}
and dδ/2

Qv ,S =

{
d : kl(dS

Qv ‖d) ≤ 1
n

[
2.KL(Qv‖Pv ) + ln

4
√

m
δ

]}
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Bregman-divergence optimization

Bregman-Divergence

Let Ω ⊆ Rm and F : Ω→ R be a continuously differentiable and strictly convex
real-valued function. The Bregman divergence DF associated to F is defined for all
(p,q) ∈ Ω× Ω as

DF (p||q) = F (p)− F (q)− 〈∇F (q), (p− q)〉 ,

where ∇F (q) is the gradient of F estimated at q, and the operator 〈·, ·〉 is the dot
product function.

For our multiview learning setting, we consider

F (p) =
m∑

i=1

pi ln(pi ) + (1− pi ) ln(1− pi )

Bregman-divergence is defined as

DF (p||q) =
m∑

i=1

pi ln
(

pi

qi

)
+ (1− pi ) ln

(
1− pi

1− qi

)
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Bregman-divergence optimization

Find a vector p? ∈ Ω—that is the closest to a given vector q0 ∈ Ω—under the set P of
V linear constraints such that

argmin
p∈P

DF (p||q0)

s.t. P = {p ∈ Ω|∀v ∈ [V ], ρv p>Mv = ρv p̃>Mv}

Solving above optimization problem using the Langrangian multipliers, we have

K = DF (p||q0) +
V∑

v=1

(
ρv p>Mv − ρv p̃>Mv

)
Qv

Differentiating K w.r.t. p and Qv , the original optimization reduced to minimization of

DF

(
0
∣∣∣∣∣∣LF

(
1
2

1m,

V∑
v=1

ρv Mv Qv

))
=

m∑
i=1

ln

1+exp

−yi

V∑
v=1

ρv

nv∑
j=1

Q j
v h j

v (xv
i )



where, LF

(
1
2

1m, z
)

i
=

1
(1 + ezi )
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Multiview Parallel Update Algorithm

Given: Training set S = {(xi , yi )}m
i=1, where xi = (x1

i , . . . , x
V
i ) and yi ∈ {−1, 1}

Initialize: ρ(1) ← 1
V 1V and ∀v ,Q(1)

v ← 1
nV

1nv

Train the weak classifiers (Hv )1≤v≤V over S
For v ∈ V set the m × nv matrix Mv such that (Mv )ij = yih j

v (xv
i )

Using the current parameters ρ(t),Q(t) and q(t) ∈ Q0, we update

q(t+1) = LF

(
1
2

1m,
V∑

v=1

ρ
(t+1)
v Mv (Q(t)

v + δ
(t)
v )

)
,

such that DF (0||q(t+1)) ≤ DF (0||q(t)).

At each iteration of algorithm, following inequality holds:

DF (0||q(t+1))− DF (0||q(t)) ≤ −
V∑

v=1

ρ
(t+1)
v

nv∑
j=1

(√
W (t)+

v,j −
√

W (t)−
v,j

)2
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