Learning a Multiview Weighted Majority Vote Classifier: Using PAC-Bayesian Theory and Boosting

Anil Goyal

Laboratoire Hubert Curien UMR CNRS, Université Jean Monnet, Saint-Etienne, France

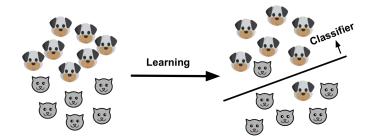
Univ. Grenoble Alps, Laboratoire d'Informatique de Grenoble, AMA, Grenoble, France

Soutenance de thèse : October 23, 2018

Devant le jury composé de:

Rapporteurs : Jean-Christophe Janodet, Cécile Capponi Examinateur : Amaury Habrard Directeur : Massih-Reza Amini Co-directrice : Emilie Morvant

Supervised Learning



Find a classifier which performs well on new unseen data

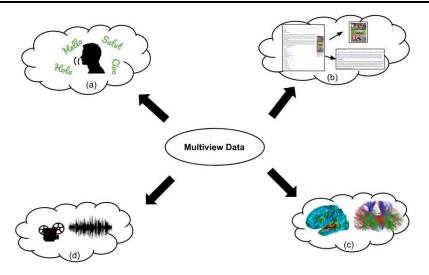
- \Rightarrow Minimize the empirical error on training data
- ⇒ Require generalization guarantees

Generalization bound True Error \leq Empirical Error + $f\left(complexity, \frac{1}{number of examples}\right)$

Anil Goyal (LaHC, St-Etienne and LIG, Grenoble)

Observations with Multiple Views

The corpus is described by different features called views

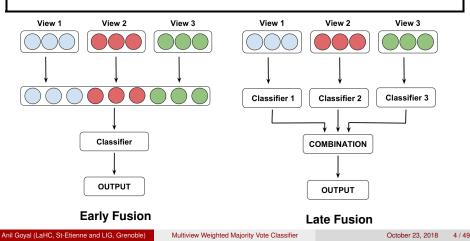


Multiview Learning

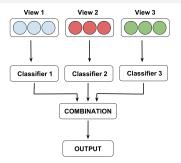
The corpus is described by different features called views

Objective

Take advantage of multiple views of data to make better prediction



Multiview Learning



Objective

- Consider more than two views
- Derive generalization guarantees for multiview learning

Our Solution

 $\begin{array}{l} \mbox{Combination} = \mbox{Weighted majority vote over the classifiers} \\ \Rightarrow \mbox{Exploiting PAC-Bayesian Theory and Boosting} \end{array}$

Anil Goyal (LaHC, St-Etienne and LIG, Grenoble)

Theoretical Contributions

- A new PAC-Bayesian Theorem as an Expected Risk Bound (CAp'17, ECML-PKDD'17)
- PAC-Bayesian Analysis of Multiview Learning (CAp'16, CAp'17, ECML-PKDD'17)

Algorithmic Contributions

- Two-step multiview learning algorithm based on late fusion approach (CAp'17, ECML-PKDD'17)
- One-step boosting based multiview learning algorithm (Submitted to Neurocomputing)
- Multiview Learning as Bregman Divergence Minimization (CAp'18, IDA'18)

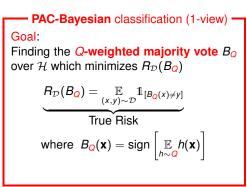
Outline

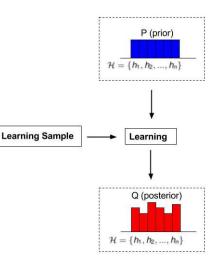
Monoview PAC-Bayesian Theory • Background

- PAC-Bayesian Generalization Bounds
- PAC-Bayesian analysis of Multiview Learning
 - Hierarchy of distributions
 - Multiview PAC-Bayes Generalization Bound
- Multiview Learning Algorithms based on PAC-Bayesian Theory
 - Proposed Algorithms
 - Experimental Results
- 4 Multiview Learning as Bregman Divergence optimization
 - Bregman Divergence Minimization
 - Parallel Update Boosting like Algorithm- MωMvC²
 - Experimental Results
- Conclusion and Perspectives

PAC-Bayesian Setting

- $\mathcal{X} \subseteq \mathbb{R}^d$ input space, $\mathcal{Y} = \{-1, +1\}$
- $\mathcal D$ is unknown distribution on $\mathcal X \!\times\! \mathcal Y$
- Learning Sample:
 - $S = \{(x_i, y_i)\}_{i=1}^m \overset{iid}{\sim} (\mathcal{D})^m$
- A set of classifiers $\mathcal{H} = \{h : \mathcal{X} \to \mathcal{Y}\}$





The stochastic Gibbs classifier

- The PAC-Bayesian approach does **not** directly focus on $R_D(B_Q)$
- but on the error of the stochastic Gibbs classifier G_Q which labels a new example x ∈ X by
 - picking one *h* according to *Q*
 - returning *h*(**x**)

The stochastic Gibbs classifier

- The PAC-Bayesian approach does **not** directly focus on $R_D(B_Q)$
- but on the error of the stochastic Gibbs classifier G_Q which labels a new example x ∈ X by
 - picking one *h* according to *Q*

• returning *h*(**x**)

IMPORTANT — the risk of G_Q is the expectation of the risks on \mathcal{H} according to Q

$$R_{\mathcal{D}}(G_{\boldsymbol{Q}}) = \underset{h \sim \boldsymbol{Q}}{\mathbb{E}} R_{\mathcal{D}}(h)$$

We can prove

- i) $R_{\mathcal{D}}(B_{Q}) \leq 2R_{\mathcal{D}}(G_{Q})$
- ii) C-Bound:

$$R_{\mathcal{D}}(B_{\mathcal{Q}}) \leq 1 - rac{\left(1 - 2R_{\mathcal{D}}(G_{\mathcal{Q}})
ight)^2}{1 - 2d_{\mathcal{D}}(\mathcal{Q})}$$

where $d_{\mathcal{D}}(\mathcal{Q}) = \underset{x \sim \mathcal{D}_{\mathcal{X}}}{\mathbb{E}} \underset{h,h' \sim \mathcal{Q}^2}{\mathbb{1}} \mathbb{1}_{[h(x) \neq h'(x)]}$ is the **expected disagreement**

Outline

Monoview PAC-Bayesian Theory

- Background
- PAC-Bayesian Generalization Bounds
- PAC-Bayesian analysis of Multiview Learning
 - Hierarchy of distributions
 - Multiview PAC-Bayes Generalization Bound
- 3 Multiview Learning Algorithms based on PAC-Bayesian Theory
 - Proposed Algorithms
 - Experimental Results
- 4 Multiview Learning as Bregman Divergence optimization
 - Bregman Divergence Minimization
 - Parallel Update Boosting like Algorithm- MωMvC²
 - Experimental Results
- Conclusion and Perspectives

Monoview PAC-Bayesian Bound

General Form of Probabilistic Generalization Bound:

$$\Prob_{S\sim(\mathcal{D})^{m}}\left(\forall h \in \mathcal{H}, \underbrace{\mathcal{R}_{\mathcal{D}}(h)}_{\text{True Error}} \leq \underbrace{\mathcal{R}_{S}(h)}_{\text{Empirical Error}} + f\left(complexity(h), \frac{1}{m}, \delta\right)\right) \geq 1 - \delta$$

Monoview PAC-Bayesian Bound

General Form of Probabilistic Generalization Bound:

$$\Pr_{S \sim (\mathcal{D})^{m}} \left(\forall h \in \mathcal{H}, \underbrace{R_{\mathcal{D}}(h)}_{\text{True Error}} \leq \underbrace{R_{S}(h)}_{\text{Empirical Error}} + f\left(complexity(h), \frac{1}{m}, \delta \right) \right) \geq 1 - \delta$$

Theorem (McAllester 2003, Germain et al. 2015)

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any \mathcal{H} , for any prior P over \mathcal{H} , for any $\delta \in (0, 1]$, we have

$$\operatorname{Prob}_{S\sim(\mathcal{D})^{m}}\left(\forall Q \text{ on } \mathcal{H}, \underbrace{\mathbb{E}}_{h\sim Q} \underset{R_{\mathcal{D}}(G_{Q})}{\mathbb{E}} \mathcal{R}_{S}(h) \leq \underbrace{\mathbb{E}}_{R_{S}(G_{Q})} \underset{R_{S}(G_{Q})}{\mathbb{E}} \mathcal{R}_{S}(h) + \sqrt{\frac{\operatorname{KL}(Q \| P) + \ln \frac{2\sqrt{m}}{\delta}}{2m}}\right) \geq 1 - \delta$$

where, $R_{\mathcal{D}}(h)$ and $R_{\mathcal{S}}(h)$ are respectively the true and the empirical risks of individual voters and $KL(Q||P) = \underset{h \sim Q}{\mathbb{E}} ln \frac{Q(h)}{P(h)}$

Monoview Non-Probabilistic PAC-Bayesian Bound

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any \mathcal{H} , for any prior \mathcal{P} over \mathcal{H} , for any $\delta \in (0, 1]$, we have

$$\operatorname{Prob}_{S\sim(\mathcal{D})^{m}}\left(\forall Q \text{ on } \mathcal{H}, \underbrace{\mathbb{E}}_{h\sim Q} \underset{R_{\mathcal{D}}(G_{Q})}{\mathbb{E}} \leq \underbrace{\mathbb{E}}_{h\sim Q} \underset{R_{S}(G_{Q})}{\mathbb{E}} \underset{R_{S}(G_{Q})}{\mathbb{E}} + \sqrt{\frac{\operatorname{KL}(Q \| P) + \ln \frac{2\sqrt{m}}{\delta}}{2m}}\right) \geq 1 - \delta$$

First contribution (CAp'17, ECML-PKDD'17)

 \Rightarrow Risk Bound in expectation over all learning samples $S \stackrel{iid}{\sim} (\mathcal{D})^m$

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any \mathcal{H} , for any prior \mathcal{P} on \mathcal{H} , for any convex function $D: [0, 1] \times [0, 1] \rightarrow \mathbb{R}$

$$\mathbb{E}_{S \sim (\mathcal{D})^{m}} R_{\mathcal{D}}(G_{\mathcal{O}_{S}}) \leq \mathbb{E}_{S \sim (\mathcal{D})^{m}} R_{S}(G_{\mathcal{O}_{S}}) + \sqrt{\frac{\mathbb{E}_{S \sim \mathcal{D}^{m}} \mathsf{KL}(Q_{S} \| P) + \ln 2\sqrt{m}}{2m}}$$

Expected Risk bound for PAC-Bayesian theory

- General bound for single view learning
- Expressed as expectation over all the possible learning samples
- Extension of this bound to multiview learning

Outline

Monoview PAC-Bayesian Theory

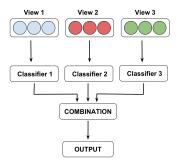
- Background
- PAC-Bayesian Generalization Bounds

PAC-Bayesian analysis of Multiview Learning

- Hierarchy of distributions
- Multiview PAC-Bayes Generalization Bound
- Multiview Learning Algorithms based on PAC-Bayesian Theory
 - Proposed Algorithms
 - Experimental Results
- 4 Multiview Learning as Bregman Divergence optimization
 - Bregman Divergence Minimization
 - Parallel Update Boosting like Algorithm- MωMvC²
 - Experimental Results

Conclusion and Perspectives

Multiview Learning Setting



Objective

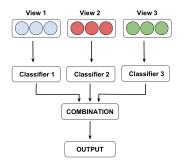
- Take advantage of $\mathbf{V} \ge \mathbf{2}$ views of data to make better prediction
- Control the trade-off accuracy and diversity between the views

From Multiview to PAC-Bayes...

Hierarchy of distribution over all the view-specific classifiers

Anil Goyal (LaHC, St-Etienne and LIG, Grenoble)

Multiview Learning Setting



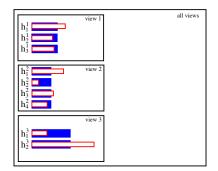
Formally,

- V > 2 different input spaces $\mathcal{X}_{v} \subset \mathbb{R}^{d_{v}}$
- Joint input space: $\mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_V$, output space: $\mathcal{Y} = \{-1, +1\}$
- An example: $(\mathbf{x}, \mathbf{y}) = ((\mathbf{x}^1, \dots, \mathbf{x}^V), \mathbf{y}) \in \mathcal{X} \times \mathcal{Y}$
- \mathcal{D} unknown **distribution** on $\mathcal{X} \times \mathcal{Y}$
- Given multiview learning sample $S = \{(\mathbf{x}_i, \mathbf{y}_i)\}_{i=1}^m \sim (\mathcal{D})^m$
- $\forall v \in \mathcal{V}$, we have \mathcal{H}_v a set of view-specific classifiers s.t. $\forall h_v \in \mathcal{H}_v, h_v : \mathcal{X}_v \to \mathcal{Y}$

For **each** view $v \in \mathcal{V}$, P_v prior distribution on \mathcal{H}_v

For **each** view $v \in \mathcal{V}$, P_v prior distribution on \mathcal{H}_v

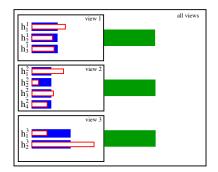
finding a posterior distribution Q_v over \mathcal{H}_v



For **each** view $v \in \mathcal{V}$, P_v prior distribution on \mathcal{H}_v

finding a posterior distribution Q_v over \mathcal{H}_v

 π hyper-prior distribution over **all** the views ${\cal V}$

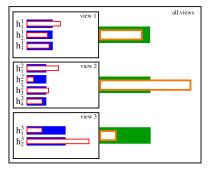


For **each** view $v \in \mathcal{V}$, P_v prior distribution on \mathcal{H}_v

- $\Rightarrow \qquad \text{finding a posterior distribution } Q_v \text{ over } \mathcal{H}_v$
 - π hyper-prior distribution over all the views ${\cal V}$
- $\Rightarrow \qquad \text{finding a hyper-posterior distribution } \rho \text{ on } \mathcal{V}$

such that they minimize the true risk $R_{\mathcal{D}}(B_{\rho}^{MV})$ of the majority vote B_{ρ}^{MV}

$$B^{MV}_{\rho}(\mathbf{x}) = \operatorname{sign}\left[\mathop{\mathbb{E}}_{v \sim \rho} \mathop{\mathbb{E}}_{h \sim \mathbf{Q}_{v}} h(x^{v}) \right]$$



The Multiview Gibbs classifier

True risk of the Multiview Gibbs classifier $R_{\mathcal{D}}(G_{\rho}^{MV}) = \underset{(\mathbf{x}, y) \sim \mathcal{D}}{\mathbb{E}} \underset{v \sim \rho}{\mathbb{E}} \underset{h \sim Q_{v}}{\mathbb{E}} R_{\mathcal{D}}(h(x^{v})) = \frac{1}{2} \underbrace{d_{\mathcal{D}}^{MV}(\rho)}_{\text{disagreement}} + \underbrace{e_{\mathcal{D}}^{MV}(\rho)}_{\text{joint error}}$

We can prove

- (i) $R_{\mathcal{D}}(B^{MV}_{\rho}) \leq 2R_{\mathcal{D}}(G^{MV}_{\rho})$
- (ii) The multiview C-Bound

 \hookrightarrow Controls the trade-off between accuracy and diversity

$$R_{\mathcal{D}}(B^{MV}_{\rho}) \leq 1 - \frac{\left(1 - 2R_{\mathcal{D}}(G^{MV}_{\rho})\right)^2}{1 - 2d^{MV}_{\mathcal{D}}(\rho)} \leq 1 - \frac{\left(1 - 2\operatorname{\mathbb{E}}_{v \sim \rho} R_{\mathcal{D}}(G_{Q_v})\right)^2}{1 - 2\operatorname{\mathbb{E}}_{v \sim \rho} d_{\mathcal{D}}(Q_v)}$$

where
$$d_{\mathcal{D}}^{\mathsf{MV}}(\rho) = \underset{\mathbf{x} \sim \mathcal{D}_{\mathcal{X}}}{\mathbb{E}} \underset{\nu \sim \rho}{\mathbb{E}} \underset{\nu' \sim \rho}{\mathbb{E}} \underset{h \sim \mathcal{Q}_{\nu}}{\mathbb{E}} \underset{\nu' \sim \rho}{\mathbb{E}} \underset{h' \sim \mathcal{Q}_{\nu'}}{\mathbb{E}} \mathbb{1}_{[h(x^{\nu}) \neq h'(x^{\nu'})]}$$

 $e_{\mathcal{D}}^{\mathsf{MV}}(\rho) = \underset{(\mathbf{x}, y) \sim \mathcal{D}}{\mathbb{E}} \underset{\nu' \sim \rho}{\mathbb{E}} \underset{h' \sim \mathcal{Q}_{\nu}}{\mathbb{E}} \underset{h' \sim \mathcal{Q}_{\nu'}}{\mathbb{E}} \mathbb{1}_{[h(x^{\nu}) \neq y]} \mathbb{1}_{[h'(x^{\nu'}) \neq y]}$

0

Outline

Monoview PAC-Bayesian Theory

- Background
- PAC-Bayesian Generalization Bounds

PAC-Bayesian analysis of Multiview Learning

Hierarchy of distributions

Multiview PAC-Bayes Generalization Bound

- Multiview Learning Algorithms based on PAC-Bayesian Theory
 - Proposed Algorithms
 - Experimental Results

Multiview Learning as Bregman Divergence optimization

- Bregman Divergence Minimization
- Parallel Update Boosting like Algorithm- MωMvC²
- Experimental Results

Conclusion and Perspectives

Non-probabilistic Multiview PAC-Bayes Bound (CAp'16, CAp'17, ECML-PKDD'17)

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any set of priors $\{P_v\}_{v=1}^V$, for any hyper-priors π over \mathcal{V} , we have

$$\mathbb{E}_{S \sim \mathcal{D}^{m}} R_{\mathcal{D}}(G_{\rho_{S}}^{MV}) \leq \underbrace{\frac{1}{2} \mathbb{E}_{S \sim \mathcal{D}^{m}} d_{S}^{MV}(\rho_{S}) + \mathbb{E}_{S \sim \mathcal{D}^{m}} e_{S}^{MV}(\rho_{S})}_{\mathbb{E}_{S \sim \mathcal{D}^{m}} R_{S}(G_{\rho_{S}}^{MV})} + \sqrt{\frac{\mathbb{E}_{S \sim \mathcal{D}^{m}} \mathsf{KL}(\rho_{S} || \pi) + \ln 2\sqrt{m}}{2m}}$$

Non-probabilistic Multiview PAC-Bayes Bound (CAp'16, CAp'17, ECML-PKDD'17)

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any set of priors $\{\mathcal{P}_{v}\}_{v=1}^{V}$, for any hyper-priors π over \mathcal{V} , we have

$$\mathbb{E}_{S \sim \mathcal{D}^{m}} \mathcal{R}_{\mathcal{D}}(\mathcal{G}_{\rho_{S}}^{MV}) \leq \underbrace{\frac{1}{2} \mathbb{E}_{S \sim \mathcal{D}^{m}} \mathcal{d}_{S}^{MV}(\rho_{S}) + \mathbb{E}_{S \sim \mathcal{D}^{m}} \mathcal{e}_{S}^{MV}(\rho_{S})}{\mathbb{E}_{S \sim \mathcal{D}^{m}} \mathcal{R}_{S}(\mathcal{G}_{\rho_{S}}^{MV})} + \sqrt{\frac{\mathbb{E}_{S \sim \mathcal{D}^{m}} \mathbb{E}_{S \sim \mathcal{D}^{m}}$$

Trade-off:

- Empirical disagreement and joint error
- Expectation of view-specific KL divergences over all the views
- KL divergence between hyper-posterior and hyper-prior

Take Home Message

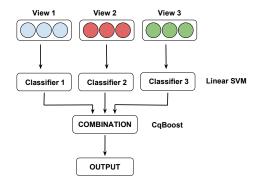
Instantiation of the PAC-Bayesian theory to multiview learning

- with more than 2 views
- by taking into account trade-off between accuracy and diversity between views and view-specific classifiers
- by considering a non-uniform distribution over the views
- Derived Multiview C-Bound controlling the trade-off between accuracy and diversity

Outline

- Monoview PAC-Bayesian Theory
 - Background
 - PAC-Bayesian Generalization Bounds
- PAC-Bayesian analysis of Multiview Learning
 - Hierarchy of distributions
 - Multiview PAC-Bayes Generalization Bound
- Multiview Learning Algorithms based on PAC-Bayesian Theory
 Proposed Algorithms
 - Experimental Results
- Multiview Learning as Bregman Divergence optimization
 - Bregman Divergence Minimization
 - Parallel Update Boosting like Algorithm- MωMvC²
 - Experimental Results
- Conclusion and Perspectives

Algorithm 1: Fusion^{all} (CAp'17, ECML-PKDD'17)



First Level 1.)

- → Learned with a Linear SVM from 60% of the learning sample
- This step is done without cross-validation with different C parameter values \rightarrow

2.) Second Level

- → Learned with CqBoost [Roy et al., 2016] from 40% of the learning sample
- \hookrightarrow CgBoost is PAC-Bayes algorithm based on monoview C-Bound

Algorithm 2: PB-MVBoost (Boosting based algorithm) (Submitted to Neurocomputing)

Given: $S = \{(\mathbf{x}_i, y_i), \dots, (\mathbf{x}_m, y_m)\}$, where $\mathbf{x}_i = (x_i^1, x_i^2, \dots, x_i^V)$ and $y_i \in \{-1, 1\}$. **Initialize:** $\mathcal{D}_1(\mathbf{x}_i) \leftarrow 1/m$, $\rho_V^1 \leftarrow 1/V$, and $H_V \leftarrow \phi$

For t = 1, ..., T:

- 1. For each view, learn a weak classifier $h_v^t : \mathcal{X}_v \to \{-1, 1\}$ w.r.t. distribution \mathcal{D}_t
- 2. Compute classifier's weight: $\forall v \in \mathcal{V}, Q_v^t$
- **3**. $\forall v \in \mathcal{V}, H_v \leftarrow H_v \cup \{h_v^t\}$
- 4. Update the weights over views (ρ) by optimizing multview C-Bound.
- 5. Update

$$\mathcal{D}_{t+1}(\mathbf{x}_i) \leftarrow \frac{\mathcal{D}_t(\mathbf{x}_i) \exp(-y_i \sum_{\nu=1}^{V} \rho_v^t(\mathbf{Q}_v^t h_v^t(x_i^\nu)))}{\sum_{j=1}^{m} \mathcal{D}_t(\mathbf{x}_j) \exp(-y_j \sum_{\nu=1}^{V} \rho_v^t(\mathbf{Q}_v^t h_v^t(x_j^\nu)))}$$

Output the multiview majority vote classifier:

$$B^{MV}_{
ho}(\mathbf{x}) = ext{sign} \left[\mathbbm{E}_{v \sim
ho} \ \mathbbm{E}_{h \sim Q_{\mathbf{v}}} h(x^v)
ight]$$

Algorithm 2: PB-MVBoost (Submitted to Neurocomputing)

Learning the weights over view-specific classifiers (view-specific informations):

$$\begin{aligned} \forall v \in \mathcal{V}, & \textbf{Q}_{v}^{t} \leftarrow \frac{1}{2} \bigg[\ln \left(\frac{1 - \epsilon_{v}^{t}}{\epsilon_{v}^{t}} \right) \bigg] \\ \text{where }, & \epsilon_{v}^{t} \leftarrow \mathop{\mathbb{E}}_{(\mathbf{x}_{i}, y_{i}) \sim \mathcal{D}_{t}} \left[\mathbb{1}_{[h_{v}^{t}(x_{i}^{v}) \neq y_{i}]} \right] \end{aligned}$$

Learning the weights over views (accuracy and diversity between views):

$$\max_{\rho} \qquad \frac{\left(1 - 2 \mathbb{E}_{v \sim \rho} R_{\mathcal{D}}(G_{Q_{v}})\right)^{2}}{1 - 2 \mathbb{E}_{v \sim \rho} d_{\mathcal{D}}(Q_{v})}$$

s.t.
$$\sum_{v=1}^{V} \rho_{v}^{t} = 1, \quad \rho_{v}^{t} \ge 0 \quad \forall v \in \{1, ..., V\}$$

Outline

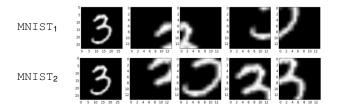
- Monoview PAC-Bayesian Theory
 - Background
 - PAC-Bayesian Generalization Bounds
- 2 PAC-Bayesian analysis of Multiview Learning
 - Hierarchy of distributions
 - Multiview PAC-Bayes Generalization Bound
- Multiview Learning Algorithms based on PAC-Bayesian Theory
 Proposed Algorithms
 - Experimental Results
- Multiview Learning as Bregman Divergence optimization
 - Bregman Divergence Minimization
 - Parallel Update Boosting like Algorithm- MωMvC²
 - Experimental Results
- Conclusion and Perspectives

Datasets (MNIST)

- \hookrightarrow Images of handwritten digits (70K images)
- \hookrightarrow Distributed over 10 classes
- \hookrightarrow Generated 2 four-view datasets where each view is a vector of $\mathbb{R}^{14\times 14}$

 \Rightarrow MNIST₁: 4 quarters of image as 4 views

- \Rightarrow MNIST₂: 4 overlapping views around centre of image
- \hookrightarrow 10K of documents as test samples



→ Multilingual text classification corpus (110K documents)

 \hookrightarrow Documents written in 5 languages (views / representations)

 \hookrightarrow Documents are distributed over 6 classes

 $\hookrightarrow 30\%$ of documents as test samples

Experimental Protocol

⇒ Fusion^{all}_{Cq} : Linear SVM at first level and Cqboost at second level ⇒ PB-MVBoost: Decision Trees as weak learner with T = 100 iterations Baseline Approaches:

⇒ Mono: Learn view-specific model on each view (Decision Trees)

⇒ Concat : One single Decision Trees model (Early Fusion)

 $\Rightarrow \texttt{Fusion}_{\texttt{dt}}$: Late fusion approach using <code>Decision Trees</code> at both levels

 \Rightarrow MV-MV [Amini et al., 2009]: Multiview uniform majority vote using Decision Trees

 \Rightarrow rBoost.SH [Peng et al., 2011]: Boosting based multiview learning algorithm

 \Rightarrow MV-AdaBoost : Multiview uniform majority vote using Adaboost

 \Rightarrow MV-Boost : Variant of our algorithm PB-MVBoost but without learning weights over views by optimizing multiview C-Bound

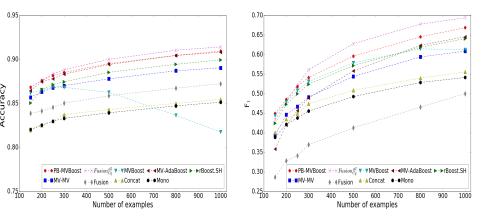
Results

Accuracy and F_1 -score of different approaches averaged over all the classes and over 20 random sets of m = 500 labeled examples per training set.

Strategy	MNIST ₁		MNIST ₂		Reuters	
	Accuracy	F ₁	Accuracy	F ₁	Accuracy	F ₁
Mono	.9034±.001	$.5353 {\pm} .006$.9164±.001	$.5987 {\pm} .007$	$.8420 \pm .002$	$.5051 \pm .007$
Concat	.9224±.002	$.6168 {\pm} .011$	$.9214 {\pm} .002$	$.6142 {\pm} .013$	$.8431 \pm .004$	$.5088 {\pm} .012$
Fusion _{dt}	.9320±.001	$.5451 \pm .019$	$.9366 {\pm} .001$	$.5937 {\pm} .020$	$.8587 {\pm} .003$	$.4128 {\pm} .017$
MV-MV	.9402±.001	$.6321 \pm .009$	$.9450 {\pm} .001$	$.6849 {\pm} .008$	$.8780 {\pm} .002$	$.5443 {\pm} .012$
rBoost.SH	.9256±.001	$.5315 {\pm} .009$	$.9545 {\pm} .0007$	$.7258 {\pm} .005$	$.8853 {\pm} .002$.5718±.011
MV-AdaBoost	<i>.9514</i> ±.001	$.6510 {\pm} .012$	<i>.9641</i> ±.0009	$.7776 {\pm} .007$.8942±.006	$.5581 {\pm} .013$
MV-Boost	.9494±.003	<i>.7733</i> ±.009	$.9555 {\pm} .002$	<i>.7910</i> ±.006	$.8627 {\pm} .007$	$.5789 {\pm} .012$
$Fusion_{Ca}^{all}$.9418±.002	$.6120 {\pm} .040$	$.9548 {\pm} .003$	$.7217 {\pm} .041$	$\textbf{.9001} \pm .003$	$\textbf{.6279}~\pm .019$
PB-MVBoost	.9661 ±.0009	.8066 ±.005	.9674 ±.0009	.8166 ±.006	<i>.8953</i> ±.002	<i>.5960</i> ±.015

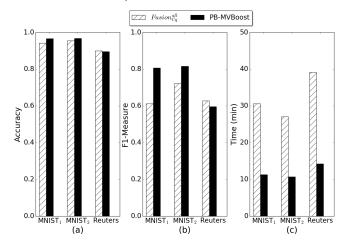
Results

Evolution of Accuracy and F_1 w.r.t. the size of labeled training set



Results

Comparison between $\mathtt{Fusion}^{\mathtt{all}}_{\mathtt{Cq}}$ and <code>PB-MVBoost</code>



One-step algorithm PB-MVBoost is more stable and more effective

Anil Goyal (LaHC, St-Etienne and LIG, Grenoble)

Multiview Weighted Majority Vote Classifier

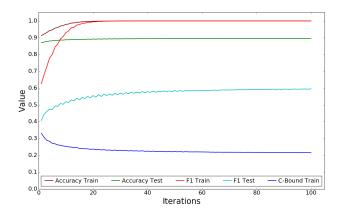
Accuracy and F_1 -score of different approaches averaged over all the classes and over 20 random sets of m = 500 labeled examples per training set.

Strategy	MNIST ₁		MNIST ₂		Reuters	
	Accuracy	F ₁	Accuracy	F ₁	Accuracy	F ₁
Mono	.9034±.001	$.5353 {\pm} .006$.9164±.001	$.5987 {\pm} .007$	$.8420 \pm .002$	$.5051 \pm .007$
Concat	.9224±.002	$.6168 {\pm} .011$	$.9214 \pm .002$	$.6142 {\pm} .013$	$.8431 \pm .004$	$.5088 {\pm} .012$
Fusion _{dt}	.9320±.001	$.5451 \pm .019$	$.9366 {\pm} .001$	$.5937 {\pm} .020$	$.8587 \pm .003$	$.4128 {\pm} .017$
MV-MV	.9402±.001	$.6321 \pm .009$	$.9450 {\pm} .001$	$.6849 {\pm} .008$	$.8780 {\pm} .002$	$.5443 {\pm} .012$
rBoost.SH	.9256±.001	$.5315 {\pm} .009$	$.9545 {\pm} .0007$	$.7258 {\pm} .005$	$.8853 {\pm} .002$	$.5718 {\pm} .011$
MV-AdaBoost	<i>.9514</i> ±.001	$.6510 {\pm} .012$	<i>.9641</i> ±.0009	$.7776 {\pm} .007$	$.8942 {\pm} .006$	$.5581 \pm .013$
MV-Boost	.9494±.003	<i>.7733</i> ±.009	$.9555 {\pm} .002$	<i>.7910</i> ±.006	$.8627 {\pm} .007$	$.5789 {\pm} .012$
Fusion _{Cq}	.9418±.002	$.6120 {\pm} .040$	$.9548 {\pm} .003$	$.7217 {\pm} .041$	$\textbf{.9001} \pm .003$	$\textbf{.6279} \pm .019$
PB-MVBoost	.9661 ±.0009	.8066 ±.005	.9674 ±.0009	.8166 ±.006	<i>.8953</i> ±.002	<i>.5960</i> ±.015

Two-level hierarchical strategy in a PAC-Bayesian manner is an effective way

Results

Behaviour of PB-MVBoost over T = 100 iterations for Reuters (m = 500) dataset



 \hookrightarrow The empirical multiview C-Bound keeps on decreasing over the iterations \hookrightarrow Control of trade-off between accuracy and diversity between the views

Designed two multiview learning algorithms based on PAC-Bayesian Theory

• Fusion^{all}: Late fusion based algorithm

• PB-MVBoost: One-step boosting based algorithm

• PB-MVBoost is more stable and effective algorithm for multiview learning

Outline

- Monoview PAC-Bayesian Theory
 - Background
 - PAC-Bayesian Generalization Bounds
- PAC-Bayesian analysis of Multiview Learning
 - Hierarchy of distributions
 - Multiview PAC-Bayes Generalization Bound
- Multiview Learning Algorithms based on PAC-Bayesian Theory
 - Proposed Algorithms
 - Experimental Results

Multiview Learning as Bregman Divergence optimization

- Bregman Divergence Minimization
- Parallel Update Boosting like Algorithm- M\u00f6MvC²
- Experimental Results

Conclusion and Perspectives

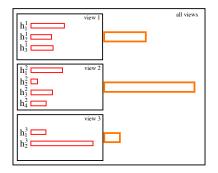
Two-level Multiview Weighted Majority vote (CAp'18, IDA'18)

For **each** view $v \in V$, H_v is a set of n_v classifiers

- \implies find weights $\mathbf{Q} = (\mathbf{Q}_v)_{1 \le v \le V}$ over \mathcal{H}_v
- \implies find weights over views $\rho = (\rho_v)_{1 \le v \le V}$

Majority Vote:
$$B_{\rho}^{MV}(\mathbf{x}) = \underset{v \sim \rho}{\mathbb{E}} \underset{h_v \sim Q_v}{\mathbb{E}} h_v(x^v)$$

such that $B^{MV}_{\rho}(\mathbf{x})$ has smallest generalization error on \mathcal{D}



Multiview Learning by Bregman Divergence Minimization

Following ERM principle,

Aim \implies Minimize 0/1-loss over training sample S:

$$R_{S}(B_{\rho}^{MV}) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{[y_{i} \neq B_{\rho}^{MV}(\mathbf{x}_{i})]} \leq \frac{1}{m} \sum_{i=1}^{m} \ln\left(1 + \exp\left(-y_{i} B_{\rho}^{MV}(\mathbf{x}_{i})\right)\right)$$

which is equivalent to the minimization of a bregman divergence:

$$D_F\left(\mathbf{0}\Big|\Big|L_F\left(\frac{1}{2}\mathbf{1}_m,\sum_{\nu=1}^{V}\rho_{\nu}\mathbf{M}_{\nu}\mathbf{Q}_{\nu}\right)\right)=\sum_{i=1}^m\ln\left(1+\exp\left(-y_i\sum_{\nu\sim\rho}\mathbb{E}_{h_{\nu}\sim\mathbf{Q}_{\nu}}h_{\nu}(x^{\nu})\right)\right)$$

where,
$$D_F(\mathbf{p}||\mathbf{q}) = \sum_{i=1}^m p_i \ln\left(\frac{p_i}{q_i}\right) + (1-p_i) \ln\left(\frac{1-p_i}{1-q_i}\right)$$
 and $L_F\left(\frac{1}{2}\mathbf{1}_m, \mathbf{z}\right) = \frac{1}{(1+e^{z_i})}$

Outline

- Monoview PAC-Bayesian Theory
 - Background
 - PAC-Bayesian Generalization Bounds
- PAC-Bayesian analysis of Multiview Learning
 - Hierarchy of distributions
 - Multiview PAC-Bayes Generalization Bound
- Multiview Learning Algorithms based on PAC-Bayesian Theory
 - Proposed Algorithms
 - Experimental Results

Multiview Learning as Bregman Divergence optimization

- Bregman Divergence Minimization
- Parallel Update Boosting like Algorithm- MωMvC²
- Experimental Results

Conclusion and Perspectives

Parallel Update Boosting like Algorithm- M@MvC²(CAp'18, IDA'18)

Given: Training set $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i = (x_i^1, \dots, x_i^V)$ and $y_i \in \{-1, 1\}$ **Initialize:** $\rho^{(1)} \leftarrow \frac{1}{V} \mathbf{1}_V$ and $\forall V, \mathbf{Q}_v^{(1)} \leftarrow \frac{1}{n_V} \mathbf{1}_{n_V}$ Train the weak classifiers $(\mathcal{H}_v)_{1 \le v \le V}$ over SFor $v \in \mathcal{V}$ set the $m \times n_v$ matrix \mathbf{M}_v such that $(\mathbf{M}_v)_{ij} = y_i h_v^j(x_i^v)$

For t = 1, ..., T:

1. Update weights over examples:

$$\forall i \in \{1, \dots, m\}, q_i^{(t)} = \sigma \left(y_i \sum_{\nu=1}^{V} \rho_{\nu}^{(t)} \sum_{j=1}^{n_{\nu}} Q_{\nu}^{j(t)} h_{\nu}^{j}(x_i^{\nu}) \right)$$

- 2. Update weights **Q** over the view-specific classifiers
- 3. Update weights ρ over the views.

Output the weighted multiview majority vote classifier:

$$B^{MV}_{\rho}(\mathbf{x}) = \mathop{\mathbb{E}}_{v \sim \rho} \mathop{\mathbb{E}}_{h_v \sim Q_v} h_v(x^v)$$

Parallel Update Boosting like Algorithm- M@MvC²(CAp'18, IDA'18)

For each view v, update weights $Q_v^{(t+1)}$ over the view-specific classifiers:

$$\begin{split} \mathcal{W}_{v,j}^{(t)+} &= \sum_{i: \text{sign}((\mathbf{M}_v)_{ij})=+1} q_i^{(t)} |(\mathbf{M}_v)_{ij}| \\ \mathcal{W}_{v,j}^{(t)-} &= \sum_{i: \text{sign}((\mathbf{M}_v)_{ij})=-1} q_j^{(t)} |(\mathbf{M}_v)_{ij}| \\ \mathcal{Q}_v^{j(t+1)} &= \mathcal{Q}_v^{j(t)} + \frac{1}{2} \ln \left(\frac{\mathcal{W}_{v,j}^{(t)+}}{\mathcal{W}_{v,j}^{(t)-}} \right) \end{split}$$

Update weights $\rho^{(t+1)}$ over the views:

$$\min_{\boldsymbol{\rho}} \qquad -\sum_{\nu=1}^{V} \rho_{\nu} \sum_{j=1}^{n_{\nu}} \left(\sqrt{W_{\nu,j}^{(t)+}} - \sqrt{W_{\nu,j}^{(t)-}} \right)^{2}$$
s.t.
$$\sum_{\nu=1}^{V} \rho_{\nu} = 1, \quad \rho_{\nu} \ge 0 \quad \forall \nu \in \mathcal{V}$$

Outline

- Monoview PAC-Bayesian Theory
 - Background
 - PAC-Bayesian Generalization Bounds
- PAC-Bayesian analysis of Multiview Learning
 - Hierarchy of distributions
 - Multiview PAC-Bayes Generalization Bound
- 3 Multiview Learning Algorithms based on PAC-Bayesian Theory
 - Proposed Algorithms
 - Experimental Results

Multiview Learning as Bregman Divergence optimization

- Bregman Divergence Minimization
- Parallel Update Boosting like Algorithm- MωMvC²
- Experimental Results

Conclusion and Perspectives

Datasets

MNIST:

- \hookrightarrow Images of handwritten digits (70K images)
- \hookrightarrow Distributed over 10 classes
- \hookrightarrow Generated 2 four-view datasets where each view is a vector of $\mathbb{R}^{14\times 14}$
 - \Rightarrow MNIST₁: 4 quarters of image as 4 views
 - \Rightarrow MNIST₂: 4 overlapping views around centre of image
- \hookrightarrow 10K of documents as test samples

Reuters RCV1/RCV2:

- → Multilingual text classification corpus (110K documents)
- \hookrightarrow Documents written in 5 languages (views / representations)
- \hookrightarrow Documents are distributed over 6 classes
- \hookrightarrow 30% of documents as test samples

Note: Reduced the imbalance between positive and negative examples by subsampling in the training sets

Experimental Protocol

 \Rightarrow M ω MvC²: Decision Trees (1 to max_d -2) as weak learners with T = 2 iterations

Baseline Approaches:

⇒ Mono: Learn view-specific model on each view (Decision Trees)

 \Rightarrow Concat : One single Decision Trees model (Early Fusion)

 \Rightarrow Fusion: Late fusion approach using Decision Trees at both levels

 \Rightarrow MVMLsp [Huusari et al., 2018] : Multiview metric learning approach.

 \Rightarrow MV-MV [Amini et al., 2009]: Multiview uniform majority vote using Decision Trees

 \Rightarrow rBoost.SH [Peng et al., 2011]: Boosting based multiview learning algorithm (T = 100 iterations)

 \Rightarrow MVWAB [Xiao et al., 2012] : Multiview Weighted Voting AdaBoost algorithm (T = 100 iterations)

Results

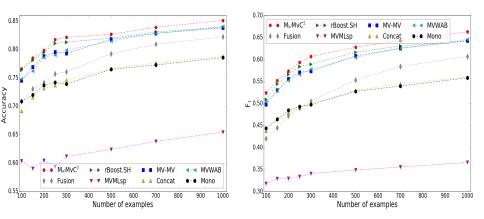
Accuracy and F_1 -score of different approaches averaged over all the classes and over 20 random sets of m = 500 labeled examples per training set

Strategy	MNIST ₁		MNIST ₂		Reuters	
	Accuracy	F ₁	Accuracy	F ₁	Accuracy	F ₁
Mono	$\textbf{.8369} \pm \textbf{.002}$	$.5206\pm.003$	$.8540\pm.003$	$.5523 \pm .004$	$.7651\pm.005$	$.5276 \pm .005$
Concat	$.8708 \pm .005$	$.5851 \pm .011$	$.8719 \pm .004$	$.5866 \pm .010$	$.7661 \pm .009$	$.5298 \pm .008$
Fusion	$.8708 \pm .005$	$.5851\pm.010$	$.9029\pm.009$	$\textbf{.6559} \pm \textbf{.018}$	$.7926 \pm .013$	$\textbf{.5533} \pm \textbf{.015}$
MVMLsp	$.7783 \pm .041$	$.4185 \pm .051$	$.7766 \pm .062$	$.4813 \pm .067$	$.6241 \pm .032$	$.3488 \pm .045$
MV-MV	$.8956\pm.003$	$.6404\pm.005$	$.9045\pm.004$	$.6627\pm.009$	$.8179 \pm .007$	$\textbf{.6083} \pm \textbf{.007}$
MVWAB	$.9175\pm.003$	$.7011 \pm .009$	$.9038 \pm .003$	$\textbf{.6838} \pm \textbf{.008}$	$.8147 \pm .007$	$.6045\pm.009$
rBoost.SH	$.7950\pm.006$	$.4652\pm.006$	$.8762\pm.004$	$.6089 \pm .007$	$.8200\pm.007$	$.6164 \pm .007$
$M\omega MvC^2$.9260 ± .004	$\textbf{.7122} \pm .010$	$\textbf{.9169} \pm .005$	$\textbf{.6977} \pm .012$	$\textbf{.8269} \pm .013$	$\textbf{.6280} \pm .010$

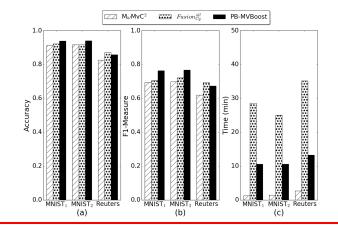
Two-level hierarchical strategy is an effective way to handle multiview learning

Results

Evolution of Accuracy and F_1 w.r.t. the size of labeled training set



Comparison ($M\omega MvC^2$ vs. PB-MVBoost vs. Fusion^{all})



 $\hookrightarrow \mathsf{M}\omega\mathsf{M}v\mathsf{C}^{2}is \text{ faster than }\mathsf{PB}-\mathsf{M}V\mathsf{Boost} \text{ and }\mathsf{Fusion}_{\mathsf{Cq}}^{\texttt{all}} \\ \hookrightarrow \mathsf{PB}-\mathsf{M}V\mathsf{Boost}: O\Big(T\big(V\,d_{v}\,m.log(m)+V^{3}\big)\Big) \text{ and }\mathsf{M}\omega\mathsf{M}v\mathsf{C}^{2}: O\Big(V\,d_{v}\,m.log(m)+T\,V^{3}\Big) \\ \hookrightarrow \mathsf{PB}-\mathsf{M}V\mathsf{Boost} \text{ can handle the imbalance between classes}$

 $\hookrightarrow \texttt{PB-MVBoost} \textbf{controls the trade-off between accuracy and diversity between the views}$

Minimization of the multiview classification error is equivalent to the minimization of Bregman divergences

• parallel-update optimization boosting-like algorithm (MωMvC²)

• Computationally faster than Fusion^{all} and PB-MVBoost

Outline

- Monoview PAC-Bayesian Theory
 - Background
 - PAC-Bayesian Generalization Bounds
- PAC-Bayesian analysis of Multiview Learning
 - Hierarchy of distributions
 - Multiview PAC-Bayes Generalization Bound
- Multiview Learning Algorithms based on PAC-Bayesian Theory
 - Proposed Algorithms
 - Experimental Results
- 4 Multiview Learning as Bregman Divergence optimization
 - Bregman Divergence Minimization
 - Parallel Update Boosting like Algorithm- MωMvC²
 - Experimental Results

Conclusion and Perspectives

Conclusion

Theoretical point of view:

- A non-probabilistic PAC-Bayesian generalization bound
- Instantiation of PAC-Bayesian theory to multiview learning with more than 2 views
 - \hookrightarrow Considering hierarchy of distributions over the view-specific classifiers

Algorithmic point of view:

- Late fusion based two-step multiview learning algorithm Fusion^{all}
- One-step boosting based multiview learning algorithm PB-MVBoost
 - $\hookrightarrow \text{Optimizes multiview } \mathcal{C}\text{-Bound}$
 - \hookrightarrow Controls the accuracy and diversity between views
- Multiview Learning as Bregman Divergence Minimization
 - $\hookrightarrow \text{Parallel update boosting like multiview learning algorithm } \mathbb{M}\omega\mathbb{M}\mathbb{VC}^2$

Perspectives

- Specialize our PAC-Bayesian generalization bounds to linear classifiers
- Suitable stopping criteria for PB-MVBoost
 - \hookrightarrow Analyze the margins of training examples
- Extension of our algorithms to semi-supervised multiview learning

 \hookrightarrow Learn view-specific classifiers using pseudo-labels (for unlabeled data) generated from other view-specific classifiers

 \hookrightarrow For PB-MVBoost, use unlabeled data while computing view-specific disagreement for optimizing multiview C-Bound

• Extension of our algorithms to the case of missing views or incomplete views

 $\hookrightarrow \textit{For PB-MVBoost}, \textit{learn view-specific classifiers using available training examples and adapt the distribution over learning sample accordingly}$

 \hookrightarrow For M ω MvC², adapt the definition of the input matrix M_{ν}

Thank you for your attention

List of Publications

- Anil Goyal, Emilie Morvant, Pascal Germain, Massih-Reza Amini Multiview Boosting by Controlling the Diversity and the Accuracy of View-specific Voters Neurocomputing (Submitted)
- Anil Goyal, Emilie Morvant, Massih-Reza Amini Multiview Learning of Weighted Majority Vote by Bregman Divergence Minimization Intelligent Data Analysis (IDA), 2018
- Anil Goyal, Emilie Morvant, Massih-Reza Amini Apprentissage d'un vote de majorité hiérarchique pour l'apprentissage multivue Conférence sur l'Apprentissage Automatique (CAp), 2018
- Anil Goyal, Emilie Morvant, Pascal Germain, Massih-Reza Amini PAC-Bayesian Analysis for a two-step Hierarchical Mutliview Learning Approach European Conference on Machine Learning & Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD), 2017
- Anil Goyal, Emilie Morvant, Pascal Germain Une borne PAC-Bayésienne en espérance et son extension à l'apprentissage multivues Conférence sur l'Apprentissage Automatique(CAp), 2017
- Anil Goyal, Emilie Morvant, Pascal Germain, Massih-Reza Amini Théorèmes PAC-Bayésiens pour l'apprentissage multivues Conférence sur l'Apprentissage Automatique (CAp), 2016

References

Massih-Reza Amini, Nicolas Usunier, and Cyril Goutte.

Learning from Multiple Partially Observed Views - an Application to Multilingual Text Categorization. In NIPS, pages 28–36, 2009.

Risk bounds for the majority vote: from a PAC-Bayesian analysis to a learning algorithm. JMLR, 16:787–860, 2015.

R. Huusari, H. Kadri, and C. Capponi.

Multi-view Metric Learning in Vector-valued Kernel Spaces. In AISTATS, 2018.

David A. McAllester

PAC-Bayesian stochastic model selection. In *Machine Learning*, pages 5–21, 2003.

J. Peng, A. J. Aved, G. Seetharaman, and K. Palaniappan.

Multiview boosting with information propagation for classification. IEEE Transactions on Neural Networks and Learning Systems, PP(99):1–13, 2017.

Jing Peng, Costin Barbu, Guna Seetharaman, Wei Fan, Xian Wu, and Kannappan Palaniappan.

Shareboost: Boosting for multi-view learning with performance guarantees. In Machine Learning and Knowledge Discovery in Databases - European Conference, ECML PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part II, pages 597–612, 2011.

Jean-Francis Roy, Mario Marchand, and FranA§ois Laviolette.

A column generation bound minimization approach with PAC-Bayesian generalization guarantees. In Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pages 1241–1249, 2016.

Min Xiao and Yuhong Guo.

Multi-view adaboost for multilingual subjectivity analysis.

In COLING 2012, 24th International Conference on Computational Linguistics, Proceedings of the Conference: Technical Papers, 8-15 December 2012, Mumbai, India, pages 2851–2866, 2012.

Monoview bound

$$\operatorname{Prob}_{S \sim \mathcal{D}^{m}} \left(D\left(R_{\mathcal{D}}(G_{\mathcal{Q}}), R_{\mathcal{S}}(G_{\mathcal{Q}}) \right) \leq \frac{1}{m} \left[\operatorname{KL}(\mathcal{Q} \| P) + \ln \left(\underset{h \sim P}{\mathbb{E}} e^{m D(R_{\mathcal{S}}(h), R_{\mathcal{D}}(h))} \right) \right] \right) \geq 1 - \delta$$

Proposed Bound for Multiview

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any $\delta \in (0, 1]$, with a probability at least $1 - \delta$ over the random choice of $S \sim (\mathcal{D})^m$, for all posterior $\{Q_v\}_{v=1}^v$ and hyper-posterior ρ distributions, for any convex function $D : [0, 1] \times [0, 1] \rightarrow \mathbb{R}$, we have

$$D\left(R_{\mathcal{D}}(G_{\rho}^{MV}), \underbrace{\frac{1}{2}d_{S}^{MV}(\rho) + e_{S}^{MV}(\rho)}_{R_{S}(G_{\rho}^{MV})}\right)$$

$$\leq \frac{1}{m}\left[\mathbb{E}_{v \sim \rho}\mathsf{KL}(Q_{v} \| P_{v}) + \mathbb{KL}(\rho \| \pi) + \ln\left(\frac{1}{\delta}\mathbb{E}_{v \sim \pi} \lim_{h \sim P_{v}} e^{mD(R_{S}(h), R_{\mathcal{D}}(h))}\right)\right]$$

Multiview Non-probabilistic PAC-Bayes Bound

Monoview bound

$$D\left(\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}R_{\mathcal{D}}(G_{Q_{S}}),\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}R_{S}(G_{Q_{S}})\right) \leq \frac{1}{m}\left[\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\mathsf{KL}(Q_{S}\|P) + \ln\left(\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\underset{h\sim P}{\mathbb{E}}e^{mD(R_{S}(h),R_{D}(h))}\right)\right]$$

Proposed Bound for Multiview

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any set of priors $\{P_v\}_{v=1}^V$, for any hyper-priors π over \mathcal{V} , for any convex function $D : [0, 1] \times [0, 1] \to \mathbb{R}$, we have

$$D\left(\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}R_{\mathcal{D}}(G_{\rho_{S}}^{MV}),\underbrace{\frac{1}{2}\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}d_{S}^{MV}(\rho_{S}) + \underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}e_{S}^{MV}(\rho_{S})}_{R_{S}(G_{\rho_{S}}^{MV})}\right)$$

$$\leq \frac{1}{m}\left[\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\underset{v\sim\rho_{S}}{\mathbb{E}}\mathsf{KL}(Q_{v,S}||P_{v}) + \underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\mathsf{KL}(\rho_{S}||\pi) + \ln\left(\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\underset{v\sim\pi}{\mathbb{E}}\underset{h\sim P_{v}}{\mathbb{E}}e^{mD(R_{S}(h),R_{D}(h))}\right)\right]$$

Square Root Bound

Obtained using $D(a, b) = 2(a - b)^2$

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any set of priors $\{P_v\}_{v=1}^V$, for any hyper-priors π over \mathcal{V} , we have

$$\mathbb{E}_{S \sim \mathcal{D}^{m}} R_{\mathcal{D}}(G_{\rho_{S}}^{MV}) \leq \underbrace{\frac{1}{2} \mathbb{E}_{S \sim \mathcal{D}^{m}} d_{S}^{MV}(\rho_{S}) + \mathbb{E}_{S \sim \mathcal{D}^{m}} e_{S}^{MV}(\rho_{S})}{\mathbb{E}_{S \sim \mathcal{D}^{m}} R_{S}(G_{\rho_{S}}^{MV})} + \sqrt{\frac{\mathbb{E}_{S \sim \mathcal{D}^{m}} \mathbb{E}_{S \sim \mathcal{D}^{m}} \mathsf{KL}(Q_{v,S} || P_{v}) + \mathbb{E}_{S \sim \mathcal{D}^{m}} \mathsf{KL}(\rho_{S} || \pi) + \ln 2\sqrt{m}}{2m}}$$

Trade-off:

- Empirical disagreement and joint error
- Expectation of view-specific KL divergences over all the views
- KL divergence between hyper-posterior and hyper-prior

Links the true risk and the empirical risk by a linear relation

Parametrized Bound

Obtained using $D(a, b) = \mathcal{F}(b) - Ca$

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any set of priors $\{P_v\}_{v=1}^V$, for any hyper-priors π over \mathcal{V} , for all C > 0 we have

$$\sum_{S \sim \mathcal{D}^{m}} R_{\mathcal{D}}(G_{\rho_{S}}^{MV}) \leq \frac{1}{1 - e^{-C}} \left(1 - \exp\left[- \left[C \sum_{S \sim \mathcal{D}^{m}} R_{S}(G_{\rho_{S}}^{MV}) + \frac{1}{m} \left[\sum_{S \sim \mathcal{D}^{m}} \sum_{v \sim \rho_{S}} \mathsf{KL}(Q_{v,S} \| P_{v}) + \sum_{S \sim \mathcal{D}^{m}} \mathsf{KL}(\rho_{S} \| \pi) \right] \right] \right)$$

Explicitly controls the trade-off between the empirical risk and the KL divergence terms using the hyperparameter C

Parametrized Bound

Restricting $C \in (0,2)$ and using $e^{-C} \le 1 - C - \frac{1}{2}C^2$, we can obtain looser but simpler bound

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any set of priors $\{\mathcal{P}_{v}\}_{v=1}^{V}$, for any hyper-priors π over \mathcal{V} , for all C > 0 we have

$$\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}R_{\mathcal{D}}(G_{\rho_{S}}^{MV}) \leq \frac{1}{1-\frac{1}{2}C} \left(\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}R_{S}(G_{\rho_{S}}^{MV}) + \frac{\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\underset{v\sim\rho_{S}}{\mathbb{E}}\mathsf{KL}(Q_{v,S} \| P_{v}) + \underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\mathsf{KL}(\rho_{S} \| \pi)}{m \times C} \right)$$

Choosing $C = \frac{1}{\sqrt{m}}$ the bound converges to $1 \times [R_S(G_{\rho_S}^{MV}) + 0]$ as *m* grows

Small kl Bound

Obtained using $D(a, b) = kl(a, b) = a \ln \frac{a}{b} + (1 - a) \ln \frac{1 - a}{1 - b}$

For any \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any set of priors $\{P_v\}_{v=1}^V$, for any hyper-priors π over \mathcal{V} , we have

$$\mathsf{kl}\left(\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}R_{\mathcal{S}}(G_{\rho_{\mathcal{S}}}^{MV}),\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}R_{\mathcal{D}}(G_{\rho_{\mathcal{S}}}^{MV})\right)$$
$$\leq \frac{1}{m}\left[\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\underset{V\sim\rho_{\mathcal{S}}}{\mathbb{E}}\mathsf{KL}(Q_{\nu,S}||P_{\nu}) + \underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\mathsf{KL}(\rho_{\mathcal{S}}||\pi) + \ln 2\sqrt{m}\right]$$

For upper bound value, one needs to solve:

$$\max \quad b \\ s.t. \quad \mathsf{kl}\left(\underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}R_{S}(G_{\rho_{S}}^{MV}) \mid b\right) = \frac{1}{m} \left[\underset{S\sim\mathcal{D}^{m}v\sim\rho_{S}}{\mathbb{E}}\mathsf{KL}(Q_{v,S}||P_{v}) + \underset{S\sim\mathcal{D}^{m}}{\mathbb{E}}\mathsf{KL}(\rho_{S}||\pi) + \ln 2\sqrt{m}\right] \\ 0 \le b \le 1.$$

Proposition (Germain et al., 2009)
For
$$0 \leq \underset{C \geq 0}{\mathbb{E}} R_{S}(G_{\rho_{S}}^{MV}) \leq \underset{S \sim D^{m}}{\mathbb{E}} R_{D}(G_{\rho_{S}}^{MV}) \leq 1$$
, we have

$$\max_{C \geq 0} \left\{ -\ln\left(1 - \underset{S \sim D^{m}}{\mathbb{E}} R_{D}(G_{\rho_{S}}^{MV})\left[1 - e^{-C}\right]\right) - C\underset{S \sim D^{m}}{\mathbb{E}} R_{S}(G_{\rho_{S}}^{MV}) \right\} = kl\left(\underset{S \sim D^{m}}{\mathbb{E}} R_{S}(G_{\rho_{S}}^{MV}), \underset{S \sim D^{m}}{\mathbb{E}} R_{D}(G_{\rho_{S}}^{MV})\right)$$

 \hookrightarrow Small kl bound is tighter or equal to Parametrized bound

 \hookrightarrow There always exists values of ${\it C}$ for which Parametrized bound is tighter than Small kl bound

A Generalization Bound for the Multiview C-Bound

Let $V \ge 2$ be the number of views. For any distribution \mathcal{D} on $\mathcal{X} \times \mathcal{Y}$, for any set of prior distributions $\{\mathcal{P}_v\}_{v=1}^{\mathcal{V}}$, for any hyper-prior distributions π over views \mathcal{V} , and for any convex function $D : [0, 1] \times [0, 1] \to \mathbb{R}$, with a probability at least $1 - \delta$ over the random choice of $S \sim (D)^m$ for all posterior $\{\mathcal{Q}_v\}_{v=1}^{\mathcal{V}}$ and hyper-posterior ρ distributions, we have:

$$R_{\mathcal{D}}(B_{\rho}^{MV}) \leq 1 - \frac{\left(1 - 2 \underset{v \sim \rho}{\mathbb{E}} \sup\left(\mathbf{r}_{Q_{v},S}^{\delta/2}\right)\right)^{2}}{1 - 2 \underset{v \sim \rho}{\mathbb{E}} \inf \mathbf{d}_{Q_{v},S}^{\delta/2}},$$

where

$$\mathbf{r}_{\mathbf{Q}_{\mathbf{V}},S}^{\delta/2} = \left\{ r : \mathsf{kl}(\mathbf{R}_{S}(\mathbf{G}_{\mathbf{Q}_{\mathbf{V}}}) \| r) \leq \frac{1}{n} \left[\mathsf{KL}(\mathbf{Q}_{\mathbf{V}} \| \mathbf{P}_{\mathbf{V}}) + \ln \frac{4\sqrt{m}}{\delta} \right] \text{ and } r \leq \frac{1}{2} \right\}$$

and
$$\mathbf{d}_{\mathbf{Q}_{\mathbf{V}},S}^{\delta/2} = \left\{ d : \mathsf{kl}(\mathbf{d}_{\mathbf{Q}_{\mathbf{V}}}^{S} \| d) \leq \frac{1}{n} \left[2 \cdot \mathsf{KL}(\mathbf{Q}_{\mathbf{V}} \| \mathbf{P}_{\mathbf{V}}) + \ln \frac{4\sqrt{m}}{\delta} \right] \right\}$$

Bregman-Divergence

Let $\Omega \subseteq \mathbb{R}^m$ and $F : \Omega \to \mathbb{R}$ be a continuously differentiable and strictly convex real-valued function. The Bregman divergence D_F associated to F is defined for all $(\mathbf{p}, \mathbf{q}) \in \Omega \times \Omega$ as

$$\mathcal{D}_{\mathcal{F}}(\mathbf{p}||\mathbf{q}) = \mathcal{F}(\mathbf{p}) - \mathcal{F}(\mathbf{q}) - \langle
abla \mathcal{F}(\mathbf{q}), (\mathbf{p}-\mathbf{q})
angle,$$

where $\nabla F(\mathbf{q})$ is the gradient of *F* estimated at \mathbf{q} , and the operator $\langle \cdot, \cdot \rangle$ is the dot product function.

For our multiview learning setting, we consider

$$F(\mathbf{p}) = \sum_{i=1}^{m} p_i \ln(p_i) + (1 - p_i) \ln(1 - p_i)$$

Bregman-divergence is defined as

$$\mathcal{D}_{\mathcal{F}}(\mathbf{p}||\mathbf{q}) = \sum_{i=1}^{m} p_i \ln\left(rac{p_i}{q_i}
ight) + (1-p_i) \ln\left(rac{1-p_i}{1-q_i}
ight)$$

Bregman-divergence optimization

Find a vector $\mathbf{p}^* \in \Omega$ —that is the closest to a given vector $\mathbf{q}_0 \in \Omega$ —under the set \mathcal{P} of V linear constraints such that

$$\begin{array}{l} \underset{\boldsymbol{\rho}\in\mathcal{P}}{\operatorname{argmin}} \quad D_{\boldsymbol{F}}(\boldsymbol{p}||\boldsymbol{q}_{0}) \\ \text{s.t.} \quad \mathcal{P} = \{\boldsymbol{p}\in\Omega|\forall\boldsymbol{\nu}\in[\boldsymbol{V}], \ \boldsymbol{\rho}_{\boldsymbol{\nu}}\boldsymbol{p}^{\top}\boldsymbol{\mathsf{M}}_{\boldsymbol{\nu}} = \boldsymbol{\rho}_{\boldsymbol{\nu}}\tilde{\boldsymbol{p}}^{\top}\boldsymbol{\mathsf{M}}_{\boldsymbol{\nu}} \} \end{array}$$

Solving above optimization problem using the Langrangian multipliers, we have

$$\mathcal{K} = \mathcal{D}_{\mathcal{F}}(\mathbf{p}||\mathbf{q}_0) + \sum_{\nu=1}^{V} \left(\rho_{\nu} \mathbf{p}^{\top} \mathbf{M}_{\nu} - \rho_{\nu} \tilde{\mathbf{p}}^{\top} \mathbf{M}_{\nu} \right) \mathbf{Q}_{\nu}$$

Differentiating K w.r.t. **p** and Q_v , the original optimization reduced to minimization of

$$D_F\left(\mathbf{0}\Big|\Big|L_F\left(\frac{1}{2}\mathbf{1}_m,\sum_{\nu=1}^V\rho_{\nu}\mathbf{M}_{\nu}\mathbf{Q}_{\nu}\right)\right) = \sum_{i=1}^m \ln\left(1 + \exp\left(-y_i\sum_{\nu=1}^V\rho_{\nu}\sum_{j=1}^{n_{\nu}}\mathbf{Q}_{\nu}^j h_{\nu}^j(x_i^{\nu})\right)\right)$$

where,
$$L_F\left(\frac{1}{2}\mathbf{1}_m, \mathbf{z}\right)_i = \frac{1}{(1 + e^{z_i})}$$

Multiview Parallel Update Algorithm

Given: Training set $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^m$, where $\mathbf{x}_i = (x_i^1, \dots, x_i^V)$ and $y_i \in \{-1, 1\}$ **Initialize:** $\rho^{(1)} \leftarrow \frac{1}{V} \mathbf{1}_V$ and $\forall V, \mathbf{Q}_V^{(1)} \leftarrow \frac{1}{n_V} \mathbf{1}_{n_V}$ Train the weak classifiers $(\mathcal{H}_v)_{1 \le v \le V}$ over SFor $v \in \mathcal{V}$ set the $m \times n_v$ matrix \mathbf{M}_v such that $(\mathbf{M}_v)_{ij} = y_i h_v^j(x_i^v)$

Using the current parameters $\boldsymbol{\rho}^{(t)}, \, \boldsymbol{Q}^{(t)}$ and $\mathbf{q}^{(t)} \in \mathcal{Q}_0$, we update

$$\mathbf{q}^{(t+1)} = L_F\left(\frac{1}{2}\mathbf{1}_m, \sum_{\nu=1}^V \rho_{\nu}^{(t+1)} \mathbf{M}_{\nu}(\mathbf{Q}_{\nu}^{(t)} + \boldsymbol{\delta}_{\nu}^{(t)})\right),$$

such that $D_F(0||\mathbf{q}^{(t+1)}) \le D_F(0||\mathbf{q}^{(t)})$.

At each iteration of algorithm, following inequality holds:

$$D_{F}(\mathbf{0}||\mathbf{q}^{(t+1)}) - D_{F}(\mathbf{0}||\mathbf{q}^{(t)}) \leq -\sum_{\nu=1}^{V} \frac{\rho_{\nu}^{(t+1)}}{\rho_{\nu}^{\nu}} \sum_{j=1}^{n_{\nu}} \left(\sqrt{W_{\nu,j}^{(t)+}} - \sqrt{W_{\nu,j}^{(t)-}}\right)^{2}$$